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High-Order Mixed RWG Basis Functions for
Electromagnetic Applications

Wei Cai, Tiejun Yu, Han Wang, and Yijun Yu

Abstract—In this paper, we present an explicit form of high-
order mixed Rao–Wilton–Glisson basis functions for electromag-
netic (EM) simulation of curved conductor surfaces. Basis
functions for combinations of curved triangular and quadrilateral
patches can be used. Several applications of EM simulations in
multilayered media, such as three-dimensional discontinuities in
very large scale integration design, multilayered RF components,
and multilayered antennas, are provided to show the feasibility
and efficiency of the mixed basis functions.

Index Terms—Electromagnetic scattering, microwave devices,
numerical analysis, very large scale integration.

I. INTRODUCTION

T HE growth of wireless communication and the increase
in clock frequency of microprocessors has made the

design of RF/microwave components/subsystems, integrated
circuits (ICs), packages, and printed circuit boards (PCBs) ever
challenging. It has become indispensable for designer engi-
neers to include the three-dimensional (3-D) parasitic effect
via full-wave electromagnetic (EM) analysis during the design
process for these applications. Various numerical techniques
have been developed to carry out the EM-field simulation,
which include the mode-matching method, finite-difference
time-domain (FDTD) using Yee scheme [1], or integral-equa-
tion formulation [2] with Galerkin-type method of moments
(MOM) approximation [3]. Among these numerical techniques,
the main advantage of the integral formulation is the reduction
of unknowns for problems in 3-D and/or unbounded domains,
and its flexibility in handling complex geometry of the scatter
surface and the automatic enforcement of Sommerfeld exterior
decaying conditions [4] by the construction of proper Green’s
functions. In this paper, we apply the MOM to solve the
mixed-potential integral equation (MPIE) for the extraction
of scattering parameters of embedded 3-D RF components,
microstrip discontinuities, and multilayer antennas.
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Fig. 1. Multilayer medium with embedded scatterS.

In an MPIE formulation, the EM fields are expressed in terms
of surface electrical or magnetic currents on the scatter surface,
which is assumed to be embedded in a multilayered exterior
medium. The exterior medium considered in this paper is as-
sumed to consist of a planar-layered medium, as shown in Fig. 1.
The MPIE-based MOM has the following three important com-
ponents:

1) derivation and calculation of the multilayered dyadic
Green’s functions for vector and scalar potentials;

2) representation of surface currents over the scatter surface
with the appropriate basis function;

3) solution of the impedance matrix equation resulting from
the MOM procedure.

In this paper, we will concentrate on the construction of a new
mixed curved or planar triangular and quadrilateral basis func-
tion, which can be used to achieve higher order accuracy and
efficiency for arbitrary 3-D scattering objects. For the formula-
tion and calculation of a multilayered Green’s function, we will
use a newly developed fast algorithm [5], which involves a novel
mathematical technique for the fast and accurate calculation of
Sommerfeld-type integrals arising from the representation of a
multilayered dyadic Green’s function, the technique can be ap-
plied to any number of multilayered medium without a need for
surface pole extractions, as in [6] (an improved version has been
proposed recently in [7] without surface-wave pole extractions)
or the knowledge of a steep-descent path for the Sommerfeld
integrals [8]. We will use a direct matrix solver for the solution
of the impedance matrix equation.

To represent the current vector field over conductor’s
surfaces, in many cases, it is important to have a vector basis
with continuity of the normal components across the interfaces
among adjacent elements. The triangular Rao–Wilton–Glisson
(RWG) basis function [9] is the most widely used zeroth-order
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basis function. In this paper, we will introduce a newly devel-
oped mixed triangular and quadrilateral basis functions, which
have the following properties.

1) It is applicable to either curved or flat triangular and/or
quadrilateral patches.

2) It can be higher order while the lowest order, over flat
triangular patches, reduces to the usual RWG basis func-
tions.

3) The normal components of the current basis are contin-
uous across common interfaces among adjacent patches.

High-order basis functions over triangular patches have been
attempted in [10], however, no explicit and easy-to-implement
formulations of the basis functions for general high orders have
been provided. The MOM using parametric geometry of either
triangular or quadrilateral curved patches with first-order basis
functions has been used in [11]–[13] for EM scattering calcu-
lations. The fact that mixed triangular and quadrilateral basis
can be used simultaneously can reduce the total number of
unknowns because, in many regions of scatter surfaces, quadri-
lateral (or rectangle) basis can be used and preferred for better
accuracy. Also, a higher order basis function can be useful in
reducing the error wherever the fields do not possess singulari-
ties like those near edges and corners. The basis function used
in this paper is similar to those derived in [14] and can have a
variable order of polynomials in different triangles and quadri-
laterals.

Section II presents the formulation of the MPIE formulation
for scatters embedded in a multilayered medium. Section III
provides the construction of the mixed triangular and quadrilat-
eral basis functions. Section IV presents some numerical results
with first- and high-order mixed basis functions. Finally, Sec-
tion V presents the conclusion of this paper.

II. MPIE FORMULATION

Considered an -multilayered medium with planer interfaces
normal to the -axis, as depicted in Fig. 1. The interfaces are lo-
cated at and the terminal layer will
satisfy various electric- or magnetic-wall boundary conditions.
Each of the layers is assumed to be isotropic and lossless or lossy
material with permittivity and permeability . Embedded in
this multilayered medium is a 3-D conducting object with con-
ductor surface , whose outward normal is denoted by. Let

be the multilayered medium outside scatterand be the
volume inside scatter. We assume that the EM fields are time
harmonic with a time–harmonic factor being dropped.
If the scatter is impacted by an incident wave , we have the
following MPIE [15] for the surface current

(1)

where is the dyadic Green’s function for the vector potential
, is the surface impedance, and .

In our computation, we have chosen the formulation type C
described in [16] for the definition of the dyadic Green’s func-
tion , which has the following modified expression:

(2)

The details for the fast calculation of each components in (2)
can be found in [16].

For an open perfect-electric-conductor (PEC) scatter, (1) will
guarantee an unique solution. However, for a closed PEC scatter,
the solution of (1) is not unique at a certain frequency cor-
responding to the resonant frequency of the cavity inside the
scatter. A combined integral-equation approach will be able to
address the interior resonance problem [17].

III. M IXED CURRENT BASIS FUNCTIONS

In applying a Galerkin procedure to form a MOM matrix
[3], test functions will be multiplied to (1) and integrated
over the surface . In order to transfer the operator in the
second term in (1) (the scalar potential term) to the test func-
tion via integration by parts, normal continuity of the test
function is needed across the common interface of trian-
gular and quadrilateral/or triangular patches. In this section, we
will present such current basis functions; the normal continuity
of the current basis functions is the key property of the popular
RWG basis functions, which insure no accumulation of charges
across the element interfaces. In the following, we will give the
formulation of a higher order extension of the usual RWG basis
over arbitrary curved patches. Similar higher order basis func-
tions have been discussed in [14]. However, in this paper, we
will use hiearchical polynomials as the building blocks for the
higher order RWG basis functions.

Let be a curved triangle or quadrilateral surface in, and
is parameterized by , if is

a triangular patch or , if is a
quadrilateral patch. Here, is a standard reference triangle in
Fig. 2 and is a standard reference square in Fig. 3.

Tangential Vectors: are defined as

(3)

and, for convenience, we also define for triangle patches

and as the covariant tensor

(4)

The determinant of is denoted by

(5)

A. Hierarchical Polynomial Basis over Triangle

Let be the reference triangle with vertices in Fig. 2,
we group polynomials of order into the three modes of: 1)
vertex; 2) edge; and 3) internal, as in [18].
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Fig. 2. Reference triangleT .

Fig. 3. Reference rectangle
 .

• Vertex modes

(6)

Each vertex mode will take value 1 at one vertex and 0 at
the other two vertices.

• Edge modes for

(7)

where is the th order Legendre poly-
nomial.

Each edge mode is only nonzero along one edge of the
triangle .

• Internal modes for

Each of the internal mode will vanish over all edges
of .

Fig. 4. Curved triangular and triangular patches.

B. Hierarchical Polynomials over Rectangle

Let be the reference rectangle with vertices in
Fig. 3. We group polynomials of order over into the fol-
lowing three modes: 1) vertex; 2) edge; and 3) internal [18].

• Vertex modes

(8)

Each vertex mode will take value 1 at one vertex and 0
at the other three vertices.

• Edge modes for

(9)

and

(10)

Each edge mode is only nonzero along one edge of the
rectangle .

• Internal modes for

(11)

Each of the internal mode will vanish over all edges.

C. Triangular and Triangular Patches Matching

Consider the two curved triangular patches and with
a common interface with length in Fig. 4. Let and
be parameterized, respectively, by

(12)

(13)

We assume that the interface in both and is param-
eterized by and is labeled as side in and
side in .
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Following [14], high-order basis functions with continuous
normal components are constructed.

• RWG basis
If we assume that the normal component of the current

basis function remains constant along the edgein the
case of flat triangles, we have

if

if
(14)

and for flat triangle patches, we have in

(15)

(16)

and in

(17)

where

(18)

Thus, we have the RWG basis function

if

if
(19)

where and are the areas of triangles and ,
respectively.

The unknown for each edge is just .
• First-order basis

In this case, we allow the normal component of
the current basis function to vary along the edge

if

if
(20)

Fig. 5. Curved triangular and quadrilateral patches.

The unknowns for each edge are .
• Second-order basis

if

if
(21)

where . The unknowns for each edge
are , , and .

Higher order current basis functions can be found
in the Appendix.

D. Triangular and Quadrilateral Patches Matching

Consider a curved quadrilateral patchand a curved trian-
gular patch , which are parameterized separately by the two
mapping , , i.e.,

(22)

The edges of and are labeled as shown in Fig. 5. The
common interface is , which is parameterized by .
Again, we have the following current basis functions with con-
tinuous normal components across the common interface.
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• Mixed RWG basis
If we assume that the normal component of the current

basis function remains constant along the edgein case
of flat triangular and quadrilateral patches, we have

if

if
(23)

For flat triangular and quadrilateral patches,
, denotes the area of. In

(24)

and in

(25)

thus, we have the mixed RWG basis function

if

if

(26)

The unknown for each edge is just .
• Mixed first-order basis

if

if
(27)

The unknowns for each edge are

(28)

• Second-order basis

if

if
(29)

where .
The unknowns for each edge are ,

, and the unknowns for each quadrilateral are
.

Higher order current basis functions can be found in the Ap-
pendix.

IV. RESULTS AND DISCUSSIONS

Four numerical examples will be presented here to show the
advantages of the mixed basis function, and another example
will be presented to show the better accuracy of higher order
basis functions for the scattering of a 3-D PEC sphere.

-parameters are the most often used network parameters to
be measured at high frequencies. It is also easy to capture the
resonant frequency from an-parameter. After current distri-
bution on the surface of the circuit has been obtained, a deem-
bedding method [19] is used to extract the-parameters. Three
test examples will be presented to demonstrate the capability of
the mixed current basis.

A. Test 1—Two Striplines Connected by a Via

The first example is depicted in Fig. 6, which shows a two-
layer structure with two ports: two strip lines connected with a
cylindrical via. Fig. 7 shows a pure triangular mesh. At the two
ports of the circuit, two embedding arms with length greater than
1/4 wavelength are also discretized by triangles and rectangles,
respectively. The following table shows the computed results,
where “RWG” signifies a pure triangular mesh, “M-RWG” sig-
nifies a mixed mesh (triangles and rectangles), and “Structure”
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Fig. 6. Geometry of the two strip lines connected by a via with diameterd =

0:08485 mm. Both of the lines have a width ofb = 2:4 mm and a length of
a = 4:8 mm. Port 1 defined by two points (unit mm): (�3.6,�1.2,�0.795),
(�3.6, 1.2,�0.795). Port 2 defined by two points: (3.6,�1.2, 0), (3.6, 1.2, 0).

Fig. 7. Two strip lines connected by a via are discretized by pure triangles.

is the circuit itself, while “Embed arm” is the two embedding
arms. Mesh points, number of unknowns, memory requirement,
and CPU time associated with the matrix solver byLU decom-
position are all listed in Table I. Fig. 8 also shows the-parame-
ters obtained by the two meshes. A result with a pure triangular
mesh using Ansoft Inc.’s, Pittsburgh, PA, Maxwell is also in-
cluded for comparison.

B. Test 2—Multilayer Bandpass Filter

The second example is shown in Fig. 9, which is a com-
plicated bandpass filter with 28 vias embedded in a 23-layer
medium, provided by National Semiconductor Inc., Santa Clara,
CA, for wireless communication applications. As shown in this
figure, a mixed mesh is used to discretize the filter conductor
surface and the MOM is used. In Fig. 10, the -parameters
at the ports have been efficiently calculated and compared well
with the experimental measurement by National Semiconductor
Inc.

C. Test 3—Multilayer Wide-Band Antenna

The third example is a multilayer wide-band antenna, as
shown in Fig. 11. Results with rectangular and triangular
meshes agree very well.

TABLE I
COMPARISON OFMEMORY AND CPU TIME FOR RWG AND M-RWG

BASIS FUNCTIONS

Fig. 8. Comparison ofS-parameters obtained by the different basis functions.
Ansoft Inc. uses triangle basis functions.

D. Test 4—Scattering by a 3-D Sphere

In this test, we compute the scattering of a 3-D perfect con-
ducting sphere with the proposed basis functions of three dif-
ferent orders. Exact parametric representation of the sphere sur-
face is used in the construction of the basis functions.

• We assume that the incident wave is a plane wave, i.e.,

where is the unit vector of the -coordinate and
and the propagation vectoris
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Fig. 9. Filter structure is discretized by a hybrid mesh.

Fig. 10. Comparison ofS -parameters of a bandpass filter, the unit for the
horizontal axis is in hertz.

Fig. 11. Multilayer wide-band antenna.

with . In our numerical test, the radius of the sphere
is , where wavelength

, the dielectric constant and permeability
of medium are with being the di-
electric constant and permeability of the vacuum, respec-
tively.

Fig. 12. log(E ): maximum errorE for current J over the sphere.
Comparison of RWG, first and second-order methods (N = 72, top:M = 0,
middle:M = 1, and bottom:M = 2. N is the number of edges of curved
triangular patches, andM is the order of the basis functions).

The various computation parameters are as follows:
order of the numerical methods, denotes the
original RWG basis;

total number of edges of triangular patches of the
sphere;

maximum error for the surface currents, i.e.,

where the maximum is taken over all triangle patches
and is the numerical solution and is the
solution obtained by the mixed integral equation (MIE)
series [20].

We compare the accuracy of RWG basis ( ), first-order
method ( ), and second-order method ( ) with

, their maximum error in the surface currents
are 0.22, 0.43, and 0.97, respectively (see Fig. 12). There
is much improvement of the maximum error as the order of the
method is increased.

In a recent paper [21], we have addressed how to handle the
singular integrals arising from the MOM so that high-order ac-
curacy of the basis functions can be maintained.

V. CONCLUSION

We have demonstrated the flexibility and efficiency of
using mixed high-order RWG basis functions in EM scattering
with four applications. The combination of quadrilateral and
triangular basis reduces the total number of unknowns in the
impedance matrix. Higher order basis functions provide better
accuracy for the same number of surface elements.
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APPENDIX

HIGH-ORDER BASIS FUNCTIONS

A. Triangular and Triangular Patches Matching

The high-order basis function for a triangular and triangular
patch in Fig. 4 can be written as

if

if

where

(30)

and

(31)

with

(32)

Unknowns for each edge are

(33)

and interior unknowns for each triangular patch are

(34)

B. Triangular and Quadrilateral Patches Matching

The high-order basis function for a triangular and quadrilat-
eral patch in Fig. 5 can be written as

if

if
(35)

where

(36)

(37)

where . Also, the unknowns for each edge
are

(38)

and the interior unknowns for each triangular element are

(39)

while the interior unknowns for each quadrilateral element are

(40)
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