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High-Order Mixed RWG Basis Functions for
Electromagnetic Applications

Wei Cai, Tiejun Yu, Han Wang, and Yijun Yu

Abstract—n this paper, we present an explicit form of high- ine
order mixed Rao—Wilton—Glisson basis functions for electromag- : ;F
netic (EM) simulation of curved conductor surfaces. Basis Eqs g T 1A
functions for combinations of curved triangular and quadrilateral —= z=0
patches can be used. Several applications of EM simulations in _ ook i ——d
multilayered media, such as three-dimensional discontinuities in | Si i =4
very large scale integration design, multilayered RF components, oa \ v >,j, i =—dy
and multilayered antennas, are provided to show the feasibility i : L s=—d
and efficiency of the mixed basis functions. '

Index Terms—Electromagnetic scattering, microwave devices, e z=—d,
numerical analysis, very large scale integration. Grom Plane

|. INTRODUCTION Fig. 1. Multilayer medium with embedded scatfér

HE growth of wireless communication and the increase
in clock frequency of microprocessors has made theInan MPIE formulation, the EM fields are expressed in terms
design of RF/microwave components/subsystems, integratdcgurface electrical or magnetic currents on the scatter surface,
circuits (ICs), packages, and printed circuit boards (PCBs) ewghich is assumed to be embedded in a multilayered exterior
challenging. It has become indispensable for designer engiedium. The exterior medium considered in this paper is as-
neers to include the three-dimensional (3-D) parasitic effestimed to consist of a planar-layered medium, as shownin Fig. 1.
via full-wave electromagnetic (EM) analysis during the desighhe MPIE-based MOM has the following three important com-
process for these applications. Various numerical techniquesnents:
have been developed to carry out the EM-field simulation, 1) derivation and calculation of the multilayered dyadic
which include the mode-matching method, finite-difference Green's functions for vector and scalar potentials;
time-domain (FDTD) using Yee scheme [1], or integral-equa- 2) representation of surface currents over the scatter surface
tion formulation [2] with Galerkin-type method of moments with the appropriate basis function;
(MOM) approximation [3]. Among these numerical techniques, 3) solution of the impedance matrix equation resulting from
the main advantage of the integral formulation is the reduction  the MOM procedure.
of unknowns for problems in 3-D and/or unbounded domaing, this paper, we will concentrate on the construction of a new
and its flexibility in handling complex geometry of the scattepixed curved or planar triangular and quadrilateral basis func-
surface and the automatic enforcement of Sommerfeld exterig, which can be used to achieve higher order accuracy and
decaying conditions [4] by the construction of proper Greengticiency for arbitrary 3-D scattering objects. For the formula-
functions. In this paper, we apply the MOM to solve thgion and calculation of a multilayered Green'’s function, we will
mixed-potential integral equation (MPIE) for the extractiogise a newly developed fast algorithm [5], which involves a novel
of scattering parameters of embedded 3-D RF componemfathematical technique for the fast and accurate calculation of
microstrip discontinuities, and multilayer antennas. Sommerfeld-type integrals arising from the representation of a
multilayered dyadic Green’s function, the technique can be ap-
) ) ) ) g)lied to any number of multilayered medium without a need for
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basis function. In this paper, we will introduce a newly devel- In our computation, we have chosen the formulation type C
oped mixed triangular and quadrilateral basis functions, whidescribed in [16] for the definition of the dyadic Green'’s func-
have the following properties. tion G_4, which has the following modified expression:

1) Itis applicable to either curved or flat triangular and/o=s . . me | ays
quadrilateral patches. Ga = (82 +99)GY + 22GT + 22GF +§2G7

2) It can be higher order while the lowest order, over flat +22GY + 209G (2)

trlangular patches, reduces to the usual RWG basis fuﬁrﬁe details for the fast calculation of each components in (2)
tions. , can be found in [16].
3) The normal components of the current basis are contin-gq, 4 gnen perfect-electric-conductor (PEC) scatter, (1) will
uous across common interfaces among adjacent patchgsarantee an unique solution. However, for a closed PEC scatter,
High-order basis functions over triangular patches have beg® solution of (1) is not unique at a certain frequency cor-
attempted in [10], however, no explicit and easy-to-implemepésponding to the resonant frequency of the cavity inside the
formulations of the basis functions for general high orders hageatter. A combined integral-equation approach will be able to
been provided. The MOM using parametric geometry of eithaddress the interior resonance problem [17].
triangular or quadrilateral curved patches with first-order basis
functions has been used in [11]-[13] for EM scattering calcu- Ill. MIXED CURRENT BASIS FUNCTIONS

lations. The fact that mixed triangular and quadrilateral basisIn applying a Galerkin procedure to form a MOM matrix

can be used smultgneously can reduce the total number[ﬂf test functionsJ, ; will be multiplied to (1) and integrated
unknowns because, in many regions of scatter surfaces, quagliisy the surfaces. In order to transfer th& operator in the
lateral (or rectangle) basis can be used and preferred for beigkong term in (1) (the scalar potential term) to the test func-
accuracy. Also, a higher order basis function can be usefuljg, J,.; via integration by parts, normal continuity of the test
reducing the error wherever the fields do not possess singulq{,inctioanyj is needed across the common interface of trian-
ties like those near edges and corners. The basis function ugaghr and quadrilateral/or triangular patches. In this section, we
in this paper is similar to those derived in [14] and can haveyg|| present such current basis functions; the normal continuity
variable order of polynomials in different triangles and quadrgf the current basis functions is the key property of the popular
laterals. RWG basis functions, which insure no accumulation of charges

Section Il presents the formulation of the MPIE formulatiocross the element interfaces. In the following, we will give the
for scatters embedded in a multilayered medium. Section f8rmulation of a higher order extension of the usual RWG basis
provides the construction of the mixed triangular and quadrilasver arbitrary curved patches. Similar higher order basis func-
eral basis functions. Section IV presents some numerical restiliéis have been discussed in [14]. However, in this paper, we
with first- and high-order mixed basis functions. Finally, Seawill use hiearchical polynomials as the building blocks for the
tion V presents the conclusion of this paper. higher order RWG basis functions.

Let S be a curved triangle or quadrilateral surfac®ih) and
S is parameterized by = x(u1, ug), (w1, u2) € Toif Sis
a triangular patch ok = x(uy, u2), (u1, u2) € Qo if Sisa

Considered av-multilayered medium with planer interfacesduadrilateral patch. Heréj is a standard reference triangle in
normal to thez-axis, as depicted in Fig. 1. The interfaces are Id=/9- 2 @nd{} is & standard reference square in Fig. 3.
cated atz = —d;, 0 < i < N and the terminal layer will Tangential Vectors:d;x i = 1, 2 are defined as
satisfy various electric- or magnetic-wall boundary conditions. ox
Each of the layers is assumed to be isotropic and lossless or lossy Oix = ou;’
material with permittivitye and permeability:. Embedded in . , .

) . L ) . . and, for convenience, we also define for triangle patches
this multilayered medium is a 3-D conducting object with con-
ductor surfaces, whose outward normal is denoted hy Let 93X = 91X — OoX.

V1 be the multilayered medium outside scatteandV, be the

volume inside scatte§. We assume that the EM fields are timéand{g,., } as the covariant tensor

harmonic with a time—harmonic factetp(jwt) being dropped. 9x  Ox

If the scatter is impacted by an incident wa®&<, we have the - - Tsp,vs2 4
following MPIE [15] for the surface currer, e

Il. MPIE FORMULATION

i=1,2 3)

The determinant ofg,.,. } is denoted by

— 1 — :det vl = — g2 = aXXaXQ. 5
nxjwu[—/sGA-JSds—kV-/SEVGA-JSds} g = deblgu} = guga2 = g1z = || O )

=nx ZJ,—nxE®™ (1) A. Hierarchical Polynomial Basis over Trianglé

_ Let T, be the reference triangle with verticeso, cin Fig. 2,
whereG 4 is the dyadic Green'’s function for the vector potentialve group polynomials of ordet/ into the three modes of: 1)
A, Z, is the surface impedance, ahtl = w?cp. vertex; 2) edge; and 3) internal, as in [18].
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Fig. 2. Reference triangl&;.
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Fig. 4. Curved triangular and triangular patches.

B. Hierarchical Polynomials over Rectandly

Let 29 be the reference rectangle with vertides:, d, ¢ in
Fig. 3. We group polynomials of ordéd over 2, into the fol-
lowing three modes: 1) vertex; 2) edge; and 3) internal [18].

* \ertex modes

-

Fig. 3. Reference rectangfe;.

* Vertex modes

(8)

Each vertex mode will take value 1 at one vertex and 0
at the other three vertices.
e« Edge modes fo2 < [ < M

eb

NP2 (ug, ug) =(1 — ug)d(2ug + 1)
Ga(u1, uz) =uy NP (ug, ug) = (14 up)di(2ug — 1)
gp(ur, ug) =1 —ug —up Nfd(ul, uz) =uz¢i(2ug + 1)
ge(ug, uz) =uz. (6) and N, wa) = _UI(/)I(ZUQ -b ®)
Each vertex mode will take value 1 at one vertex and 0 at hi(&) = % (1= &)pi-s(®)- (10)

the other two vertices.

 Edge modesfo?2 <1 < M

g?b(ulv u?)
be
9 (U'lv U'Q)

glca(u17 u?)

wherep;(£), £ € [—1, 1] is thelth order Legendre poly-

nomial.

Each edge mode is only nonzero along one edge of the
rectanglefy.
e Internal modes fo2 < k, [ < M

= gagbP1—2(9 — ga)

NP Cuy, uz) = ¢r(2uy + D n(2uz — 1). 11
= g9epi_2(9e — 9) l,k( 15 u2) = ¢i(2uy )Pn(2u2 ) (11)
= gegapi—2(ga — Go) @) Each of the internal mode will vanish over all edgs

C. Triangular and Triangular Patches Matching

Consider the two curved triangular patchiés andZ"— with
a common interfacelC with length/ in Fig. 4. LetT't andT~

Each edge mode is only nonzero along one edge of thg parameterized, respectively, by

triangle 7p.

e Internal modes fod < k+1 < M — 3

x =xT(ug, up): To — T'F (12)

in X=X (uy, u2): To — 1. (13)
g% (s, u2) = gags9ePr(29: — 1)pi(gs — ga)- (wa, 2): T

We assume that the interfage” in both?™ andZ~ is param-

Each of the internal mode will vanish over all edgesterized byu; + w2 = 1 and is labeled as side; in 7t and

of T5.

sidee, in 7.
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Following [14], high-order basis functions with continuous
normal components are constructed.
 RWG basis
If we assume that the normal component of the current
basis function remains constant along the edggin the
case of flat triangles, we have

r
\/? (QA(Ula u2)1x + go(u1, U2)32X),
if x =xT(ug,up) €T

l
- _QA(ula u2)31X - 90(“17 u2)32x )
/—g_

L if x =x (ug, ug) € T
(14)
and for flat triangle patches, we havedt

x =x1(uy, uz)

=galur, u2)xa + ga(ur, w2)XB + go(ur, u2)xc

(15)
01X =X4 — XB
hX =Xc — XB (16)
and in7— £(x)

X = X_(U,l, U,Q)

= galur, u2)x4 + gp(us, u2)Xp + go(uy, u2)xc(17)
wheregp (u1, u2) = gp(uy, uz)

hxX=%X4 —Xp

02X =X — Xp- (18)

Thus, we have the RWG basis function

l
24+
l
24—

(x —xp), if x =xT(ug, ug) € TT
if x =x (ug, uz) € T~
(19)
whereA™ and A~ are the areas of triangl€s™ and7"—,
respectively.
The unknown for each edgéC is just/,,.
* First-order basis

(X - XD)7

u

Fig. 5. Curved triangular and quadrilateral patches.

The unknowns for each edgtC arel?, I¢.
» Second-order basis

\/% { l—’ﬁgA(ul, 7y

2@
+Tt 9o° (u1, ug) | Ax

+ | I5gc(uy, ug)

LY+ 17 o
+ 5% (ug, u2) | ax p

2

if x =xT(uy, uz) €TT

[
I { [_IZ'QA(M, U2)
&
_17(12) _® .
#922 (ub UQ) o1x

+ | —Irgc(u1, us)

@i
#922 (U'la U'Q) aQX )

if x = X_(U,l, U,Q) e~
(21)
wheree] = ¢, = ca. The unknowns for each edge
AC arele, 1¢, 1P, 1P, andI®.

Higher order current basis functions can be found
in the Appendix.

D. Triangular and Quadrilateral Patches Matching
Consider a curved quadrilateral patehand a curved trian-

In this case, we allow the normal component 0gular patch’, which are parameterized separately by the two

the current basis function to vary along the edge

!
— (—739‘4(1017 u2)o1x + I gc(uy, u2)32x)7

Vot

if x =xT(uy, up) € TT

l
(_IﬁgA(Ub U2)31X - Iﬁgc(ub U2)32X)7

F

L ifXIX_(U,l,U,Q)ET_.

mappingx;(u1, u2), ¢ = 1, 2, i.e.,

(U,l, U,Q) € Qo
(U,l, U,Q) e To. (22)

xl(ul, U,Q)Z Qo — Q,

x2(u1, U,Q)Z To — T,

The edges of) and? are labeled as shown in Fig. 5. The
common interface i$BC, which is parameterized by, = 0.
Again, we have the following current basis functions with con-

(20) tinuous normal components across the common inteface
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* Second-order basis

If we assume that the normal component of the current

basis function remains constant along the eB¢g&in case
of flat triangular and quadrilateral patches, we have

(L
/gQ
if x= xl(ul, U,Q) €N

fx)=I,4 __L_

\/gT

[NB(uh u2) + Ne(ug, U'2):| 01x,

[_ (93(“17 u2) + go(u, u2))81 X

+ go(u, u2)32x}7

l

\/ng

{ |:IrbLNB(U'17 u2) + IS Ne(ug, u2)

=+ Ir(LQ)NQGZ (U,l, U,Q)
+’Y%2N§gt(u17 UQ)} g1x

+ [IA?)NQGZ (w1, ug)

+735 N33 (uy, UQ)} 32X} ,

if x= xl(ul, U,Q) €N

L if x =Xo(ug, us) €T f(x) = I
(23) ——= < LhgB(u, u2)
/gT
For flat triangular and quadrilateral patches, 17(12) — f§2) eg( )| aix
VgT = 24T, AT denotes the area f. In Q2 G
O1x =01x1 = (1 —u2)(xp — Xg) + u2(Xc — Xp) + [LSgc(w, u2)
hX =0x1 = —U,l(XD — XE) + (1 + U,l)(Xc — XB) (24) 2) -(2)
I+ 1,7 o
— 92, u2)] 33X} ;
and inT
\ ifXIXQ(U,l,U,Q) el

MX=01X0 =X4 —Xp (29)

O2x = 02Xy = XC — XB wheree; = 5 = BC.

J3X =03X2 = 01X2 — GoXo = X4 — XC (25) . 2Th(=: 2unkn0wns for each edgBC are IY, I¢, I,

It( ), It( ), and the unknowns for each quadrilateral are
1 2
: ; ; Y225 V22-
thus, we have the mixed RWG basis function . . . .
Higher order current basis functions can be found in the Ap-
C pendix.
= (1+u)[(1 = u2)(x5 — xp)
V9 IV. RESULTS AND DISCUSSIONS
+ uz(xe — xD)}, Four numerical examples will be presented here to show the
f(x) =1, (26) advantages of the mixed basis function, and another example

if x = xl(ul, U,Q) e
[
—m(X—XA)a
\ ifXIXQ(U,l, U,Q) eT.

The unknown for each edgeC is justi,,.
» Mixed first-order basis

(1
/6
if x =x1(ug, uz) € 0Q

{
— [IﬁgB(Ub u2)01x + If go (1, u2)33X},

\/F

L ifXIXQ(U,l, U,Q) eT.

|:ITbLNB (U,l, U,Q) + I,;iNC(U/l, U,g):| 81x,

(27)
The unknowns for each eddeC are
LIe. (28)

will be presented to show the better accuracy of higher order
basis functions for the scattering of a 3-D PEC sphere.

S-parameters are the most often used network parameters to
be measured at high frequencies. It is also easy to capture the
resonant frequency from a$-parameter. After current distri-
bution on the surface of the circuit has been obtained, a deem-
bedding method [19] is used to extract thigparameters. Three
test examples will be presented to demonstrate the capability of
the mixed current basis.

A. Test 1—Two Striplines Connected by a Via

The first example is depicted in Fig. 6, which shows a two-
layer structure with two ports: two strip lines connected with a
cylindrical via. Fig. 7 shows a pure triangular mesh. At the two
ports of the circuit, two embedding arms with length greater than
1/4 wavelength are also discretized by triangles and rectangles,
respectively. The following table shows the computed results,
where “RWG” signifies a pure triangular mesh, “M-RWG” sig-
nifies a mixed mesh (triangles and rectangles), and “Structure”
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g0=1 Z  Pot2 TABLE |
p COMPARISON OFMEMORY AND CPU TiME FOR RWG AND M-RWG
v =0 BASIS FUNCTIONS
€l=2.6
- H=1.59mm Compared term RWG | M-RWG
Port 1
Structure 96 80
Ground plane Mesh No. Embed arm | 80 40
Fig. 6. Geometry of the two strip lines connected by a via with diaméter Total 176 120
0.08485 mm. Both of the lines have a width éf= 2.4 mm and a length of
a = 4.8 mm. Port 1 defined by two points (unit mm)-@8.6,—1.2,—0.795), Structure 132 116
(—3.6,1.2,—0.795). Port 2 defined by two points: (3:6.1.2, 0), (3.6, 1.2, 0).
Unknown No. Embed arm | 100 60
= Total 232 176
z
Memory 100% | 57.55%
X
CPU time 100% | 43.65%
Y
0 T T T T T
8 — & *———@ ©
s12
2 OwmixAWG |
000 Ou_RWG
- Ansoft
4} J
— Br ]
8
5
¥ o -
&
Fig. 7. Two strip lines connected by a via are discretized by pure triangles.
-10}F J
is the circuit itself, while “Embed arm” is the two embedding st
arms. Mesh points, number of unknowns, memory requiremen -12; & ]
np ) ) . yreq o—p —§ 9
and CPU time associated with the matrix solverLlydecom- 4
position are all listed in Table I. Fig. 8 also shows fiparame-
ters obtained by the two meshes. A result with a pure triangule '141 5 2 25 3 a5 4 a5 s
mesh using Ansoft Inc.’s, Pittsburgh, PA, Maxwell is also in- frequency (Git)

cluded for comparison.
Fig. 8. Comparison of -parameters obtained by the different basis functions.

B. Test 2—Multilayer Bandpass Filter Ansoft Inc. uses triangle basis functions.

The second example is shown in Fig. 9, which is a coms . : )
plicated bandpass filter with 28 vias embedded in a 23—Ia§%f Tes.t 4—Scattering by a 3-D Spher.e
medium, provided by National Semiconductor Inc., Santa Clara,!n this test, we compute the scattering of a 3-D perfect con-
CA, for wireless communication applications. As shown in thiducting sphere with the proposed basis functions of three dif-
figure, a mixed mesh is used to discretize the filter conductf§irent orders. Exact parametric representation of the sphere sur-
surface and the MOM is used. In Fig. 10, the;-parameters face is used in the construction of the basis functions.
at the ports have been efficiently calculated and compared well * We assume that the incident wave is a plane wave, i.e.,
with the experimental measurement by National Semiconductor

Inc. Einc(r) — Eo.’i’ e—jk-r

C. Test 3—Multilayer Wide-Band Antenna

The third example is a multilayer wide-band antenna, as
shown in Fig. 11. Results with rectangular and triangular
meshes agree very well.

wherez is the unit vector of the:-coordinate andzy =
1.5 and the propagation vectgris

k= k( sin 6 cos g, sin g sin g, cos 90)
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Wireless Communications Band z -2
Pass Filter for RF Front End /%\

23 Layers, 28 vias x v

0.4}

bg10(E )
5

-0.8

-1 : : i i £
] 0.2 0.4 06 0.e 1 1.2 1.4 1.8 18 2

Fig. 9. Filter structure is discretized by a hybrid mesh. M = Order of Matod

Fig. 12. log(E..): maximum errorE.. for current.J, over the sphere.
Comparison of RWG, first and second-order metha¥is£ 72, top: M = 0,
middle: M = 1, and bottom:M = 2. N is the number of edges of curved

B-Paianatar; 812 of Fiter
T 0% ’ triangular patches, antlf is the order of the basis functions).

\ Oo The various computation parameters are as follows:
\ M order of the numerical method3/ = 0 denotes the
original RWG basis;

=10

~45]

3 .
2 N total number of edges of triangular patches of the
<] fo] .
j &Y ] sphere;
o o
30l o . E.. maximum error for the surface currents, i.e.,

Eoo = max |5, app — s, ca|

\>
1 12 14 15 18 2 22 24 28 28

3 where the maximum is taken over all triangle patches
Qofid Lne ~WES, O~ National Measuement = 10’

andJ, .., is the numerical solution andl, .. is the
solution obtained by the mixed integral equation (MIE)
Fig._ 10. Co_mpar_ison of';;-parameters of a bandpass filter, the unit for the series [20]_

horizontal axis is in hertz. We compare the accuracy of RWG basié & 0), first-order
method §4 = 1), and second-order method/( = 2) with

N = 72, their maximum errolog( F..) in the surface currents

e0=1 , % ¢Radiau’ng patch are—0.22,—-0.43, and-0.97, respectively (see Fig. 12). There
< 1 Z=0 is much improvement of the maximum error as the order of the
el=1.14 method is increased.
Feeding v In a recent paper [21], we have addressed how to handle the
stripline 4mm S5mm singular integrals arising from the MOM so that high-order ac-
e2=1.12 curacy of the basis functions can be maintained.

Ground plane

Fig. 11. Multilayer wide-band antenna.
g Y V. CONCLUSION

with 8y = 0. In our numerical test, the radius of the sphere We have demonstrated the flexibility and efficiency of
isa = (1/m)A, where wavelengthh = (2n/k), & = using mixed high-order RWG basis functions in EM scattering
wy/ep, w = 2¢/2, the dielectric constant and permeabilityith four applications. The combination of quadrilateral and
of medium are: = 2¢q, 1+ = o With €g, 1o being the di- triangular basis reduces the total number of unknowns in the
electric constant and permeability of the vacuum, respemapedance matrix. Higher order basis functions provide better
tively. accuracy for the same number of surface elements.
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APPENDIX
HIGH-ORDER BASIS FUNCTIONS

A. Triangular and Triangular Patches Matching
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and interior unknowns for each triangular patch are

cllmv cl2mv dllrn’ dIQm’ (l’ m) € La. (34)

The high-order basis function for a triangular and triangular

patch in Fig. 4 can be written as

N

Pl"'(ul, ug)alx —|— P;’(ul, UQ)aQX),

=xT(uy, uz) €T

TN

Pl_(ul, u2)81x =+ PQ_(U,;L, U,Q)agx),

- .80
= | = *t
»

x=x(ui, uz) €T~

where

P (uy, ug)
M Ir(Lrn,) - j’t(rn,) 4

= I7ga(uy, u2) + 5 g (U1, us)

m=2
p

(Im)eELa

Py (u1, un)

int

1
CimIim

M Ir(Lnl)+j§nl) ot

= I;g9c(ur, uz) + g (U1, u2)

m=2 2
+ D Cimim (30)
I,m)ELA
and
P (u, uz)
M (m) £(m)
I, — 1 e
= gt w) + Y T g )
m=2
+ > digi
I,m)ELA
Py (1, u2)
M

_Ir(Lrn,) + I”‘t(rn,) B

= -1 gc(ur, ug) + g (u1, ua)

m=2 2
+ Y diagim (31)
I,m)ELA
with ¢, = ef = AC
£a={@m),0<1+m<M-3}. (32)
Unknowns for each edgdC are
Lo, Ig, 10 I 2<m <M (33)

B. Triangular and Quadrilateral Patches Matching

The high-order basis function for a triangular and quadrilat-

eral patch in Fig. 5 can be written as

(1
Vi

if x =x1(uy, us) € Q

(Ql(uh u2)01X + Q2(uy, U2)32X>7

f(x) = ;
—\/——T (Pl(m, u2)01x + Po(uy, U2)33X)7
g
L ifXIXQ(U,l,U,Q)ET
(35)
where
Ql(m, U2)
= IrblNB(ul, UQ) —+ IrcLNc(ul, UQ)
M .
+ Z Ir(l,l)Nlez (U’lﬂ U'Q) + Z 'Vlllel:::
=2 2<lm<M
QQ(U/la UQ)
M _
=> YN (g, ua) + > AN (36)
=2 2<lm<M
Py (uq, us)
Mo 70
Iy -1 o
= - 293(“17 u2) - Ttgzg(ub UQ)
1=2
+ > Cugim
(I,m)ELA
Pr(uy, ug)
Mo, 7O
- Iy’ + 1 el
= —Iigc(ur, u2) — Ttgzg(ub u2)
=2
+ > g (37)

(I,m)CLa

wheree; = e; = BC'. Also, the unknowns for each edd&”
are
o, 10, 10, 1Y,

2<I<M (38)

and the interior unknowns for each triangular element are

Clms> Cims (I, m) € L (39)

while the interior unknowns for each quadrilateral element are

Voms Vim>  2< L, m< M, (40)



CAl et al: HIGH-ORDER MIXED RWG BASIS FUNCTIONS FOR EM APPLICATIONS

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell equations in isotropic medialEEE Trans. Antennas
Propagat, vol. AP-14, pp. 302-307, May 1966.

[2] J. R. Mosig,Integral Equation Technique in Numerical Techniques fo
Microwave and Millimeter-Wave Passive Structufeltoh, Ed. New
York: Wiley, 1989, pp. 133-213.

[3] R.F. HarringtonField Computation by Moment MethadsNew York:
Macmillian, 1968.

[4] A. SommerfeldPartial Differential Equations in Physics New York:
Academic, 1964.

1303

Wei Cai received the Ph.D. degree in applied math-
ematics from Brown University, Providence, RI, in
1989.

In 1989, he joined the Department of Mathe-
matics, University of North Carolina, Charlotte,
where he was an Assistant Professor. From 1994
to 1996, he was initially an Assistant Professor
and then an Associate Professor in the Department
of Mathematics, University of California at Santa
Barbara. He is currently a Full Professor at the
University of North Carolina. His research interest

includes numerical combustion and computational electromagnetics. He is

[5] W.CaiandT. Yu, “Fast calculation of dyadic Green’s functions for eleceurrently involved in the development of adaptive wavelet methods for flame
tromagnetic scattering in a multi-layered mediurd,"Comput. Phys. propagations, and efficient numerical algorithms for EM scattering in layered

vol. 165, pp. 1-21, 2000.

media with applications for parameter extraction for computer packaging and

[6] Y.L.Chow, J.J. Yang, D. G. Fang, and G. E. Howard, “A closed-fornyery large scale integration (VLSI) simulations.

spatial Green'’s function for the thick microstrip substratEEE Trans.
Microwave Theory Techvol. 39, pp. 588-592, Mar. 1991.

[7] M. I. Aksun, “A robust approach for the derivation of closed-form
Green'’s functions,IEEE Trans. Microwave Theory Teclvol. 44, pp.
651-658, May 1996.

[8] T.J. Cui and W. C. Chew, “Fast evaluation of Sommerfeld integra
for EM scattering and radiation by three dimensional buried object
Univ. lllinois, Urbana-Champaign, IL, Res. Rep. CCEM-34-97, De
1997.

[9] S.M.Rao, D.R. Wilton, and A. W. Glisson, “Electromagnetic scatterint
by surfaces of arbitrary shapdEEE Trans. Antennas Propagatol.
AP-30, pp. 409418, May 1982.

[10] S. Wandzura, “Electric current basis functions for curved surfaces,”
Electromagneticsvol. 12, pp. 77-91, 1992.

A

Tiejun Yu received the M.S. and Ph.D. degrees in
electrical engineering from Tsinghua University, Bei-
jing, China, in 1991 and 1996, respectively.

Prior to 1990, he was an Engineer in industry
south of China. From 1991 to 1996, he was a Lec-
turer and an Assistant Professor in the Department
of Electrical Engineering, Tsinghua University. In
1997, he joined the Department of Mathematics,
University of North Carolina (UNC), Charlotte,
as a Research Associate. In 1998, he joined the
Department of Electrical Computer Engineering,

Duke University, Durham, NC, where he was involved with demining research.

[11]

[12]

J. M. Song and W. C. Chew, “Moment method solutions using par#r 2000, he joined the Cadence Company, San Jose, CA, where he is currently
metric geometry,”. Electromag. Waves Applicatol. 9, no. 1/2, pp. a Senior Research and Development Engineer. His current research interests
71-83, Jan.—Feb. 1995. include EM scattering, parameters extraction and simulation for ICs, VLSIs,
M. I. Sancer, R. L. McClary, and K. J. Glover, “Electromagnetic compuand their packages.

tation using parametric geometrElectromagneticsvol. 10, no. 1-2, Dr. Yu was the recipient of the 1998 Best Paper Award presented at the 35th
Design Automation Conference (DAC).

pp. 85-103, 1990.

[13] D. L. Wilkes and C.-C. Cha, “Method of moments solution with
parametric curved triangular patches,”IBEE AP-S Int. Symp. Dig.
London, ON, Canada, 1991, pp. 1512-1515.

[14] W. Cai, “High order current basis functions for electromagnetic sca
tering of curved surfaces,J. Sci. Comput.vol. 14, no. 1, pp. 73-107,
1999.

[15] W. C. Chew, Waves and Fields in Inhomogeneous Medind
ed. Piscataway, NJ: IEEE Press, 1995.

[16] K. A. Michalski and D. Zheng, “Electromagnetic scattering anc
radiation by surfaces of arbitrary shape in layered media—Part
Theory,” IEEE Trans. Antennas Propagatvol. 38, pp. 335-344,
Mar. 1990.

[17] J.R. Mantz and R. F. Harrington/'-field, E-field and combined field
solution for conducting bodies of revolutionArch. Elektr. Ubertra-
gung vol. 32, pp. 157-164, Apr. 1978.

[18] B. Szabo and I. Babusk&inite Element Analysis New York: Wiley,
1991.

[19] J. C. Rautio, “A de-embedding algorithm for electromagnetit,”J.
Microwave Millimeter-Wave Computer-Aided Engpl. 1, pp. 282-287,
1991.

[20] R.F. Harrington;Time Harmonic Electromagnetic FieldsNew York:
McGraw-Hill, 1961.

[21] W. Cali, Y. J. Yu, and X. C. Yuan, “Singularity treatment and higl
order RWG basis functions for integral equations of electromagne
scattering,'Int. J. Numer. Methods Engsubmitted for publication.

Han Wang received the Ph.D. degree in computa-
tional mathematics from the Carnegie-Mellon Uni-
versity, Pittsburgh, PA, in 1996.

From 1996 to 1999, he was a Visiting Assistant
Professor at the University of North Carolina, Char-
lotte. In 1999, he joined the Enovia Company, Char-
lotte, NC, 28262. He has been involved in the areas of
computations of microstructures in material science,
development of unstructured mesh generation algo-
rithms, and computational EM fields.

Yijun Yu is currently working toward the Ph.D.
degree in applied mathematics at the University of
North Carolina, Charlotte.

She is currently involved in the areas of computa-
tional EM-field and numerical-method theory.



	MTT023
	Return to Contents


